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Dioxycarbenes (4) have been generated by thermolysis of 
norbornadienone ketals (I),1 by photolysis or thermolysis of 3,3-
dioxydiazirines (2),2 and by thermolysis of 2,2-dioxy-A3-l,3,4-
oxadiazolines (3),3 Scheme I.4 Among these approaches, that 
based on 1 has been limited to the generation of only a few 
dialkoxycarbenes.1 Moreover, the byproducts from thermolysis 
of 1 can interfere with the isolation of products from reactions 
of 4. 

Diazirines 2, either with like (MeO, MeO) or with unlike (PhO, 
MeO) oxy groups, have been prepared.2 Their thermal or 
photochemical decompositions are relatively clean. As the only 
photochemical sources of 4 currently available, they are well 
suited for direct observation of carbenes 4 and for studies of the 
rates of their reactions.2<=-8 However, diazirines 2 are not 
convenient for synthetic work with 4 because they are hazardous 
compounds available only as dilute solutions. 

Oxadiazolines 3, available by oxidation of (alkoxycarbonyl)-
hydrazones of acetone (5) with lead tetraacetate (LTA)3 or by 
electrochemical oxidation,5 can be obtained as pure compounds 
with long shelf lives6 (Scheme 2). They are attractive sources 
of 4 because they fragment quite cleanly in solution at ca. 100 
0C to afford 4 and innocuous byproducts (N2, acetone), but there 
are limitations to their preparation. For example, oxidation of 
5 affords oxadiazoline in very poor yield in the presence of some 
alcohols (Scheme 2, R2OH = CF3CH2OH, for example), and 
oxidation of 5 in the presence of phenols has very poor prospects, 
because many phenols are themselves oxidized easily. 

We now report a general approach to dioxyoxadiazolines (9a-
1) from 2-acetoxy-2-methoxy-5,5-dimethyl-A3-1,3,4-oxadiazoline 
(7). The latter is formed by oxidation of the (methoxycarbonyl)-
hydrazone of acetone (6) with LTA in dichloromethane (Scheme 
3). The yield of 7 falls between 60 and 72%, and the byproduct 
is 8. Partial separation of 7 from 8 is possible by slow bulb-to-
bulb distillation under vacuum, but this tedious process is not 
necessary for the preparation of pure 9. Instead, the mixture of 
7 and 8 can be stored in the refrigerator for later use after 
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extraction of the CH2Cl2 solution with aqueous bicarbonate, 
drying of the organic layer, and evaporation of the solvent. 

Treatment of unseparated 7 and 8 in CH2Cl2 containing acetic 
acid7 with an alcohol or a phenol results in conversion of 7 to 9 
(Scheme 3). Selective hydrolysis of 8 is accomplished by stirring 
the solution with aqueous base (1 h), which yields pure 9 simply 
by drying the organic layer and evaporating the volatiles.8 Table 
1 lists 12 compounds (9) that were prepared in yields ranging 
from 61 to 94% for the substitution step.9 

The substitution reactions that convert 7 to 9 are probably SN 1 
reactions similar to the SN reactions that convert 3-bromo- or 
3-chloro-1,2-diazirines to 3-fluorodiazirines,10 or 3-alkoxy-3-halo-
1,2-diazirines to dialkoxydiazirines.2b,n It is likely that nucleo-
philes other than alcohols and phenols (e.g., cyanide, fluoride) 
will form additional interesting oxadiazolines. 

In summary, the availability of 7 opens the door to a large 
number of 2,2-dioxyoxadiazolines (9), including those with 
oxidation-sensitive functionality in R. The known thermolysis 
of 9, to form carbonyl ylides and dioxycarbenes in succession,3 
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Table 1. 2,2-Dioxyoxadiazolines (9) from 7 
9 

a 
b 
C 

d 
e 
f 

R 

Me 
Et 
Pr 
i-Pr 
Bu 
r-Bu 

yield (%)" 

94 
90 
92 
74 
82 
67 

9 

g 
h 
i 
J 
k 
1 

R 

CH2CF3 

CH2CH2O=CH 
CH2CH2CH2C=CH 
C6H5 

C6H4-P-CN 
C6H4-P-OMe 

yield (%)' 

84 
86 
78 
61 
67 
68 

" Yields of isolated product for the exchange step. 

means that the stage is set for studies of intermolecular and 
intramolecular reactions of those intermediates. Some surpris­
ingly rich chemistry of 9h has been submitted for publication. 
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